

Dopamine D₃ receptor antagonists: The quest for a potentially selective PET ligand. Part two: Lead optimization

Fabrizio Micheli ^{a,*}, Ian Holmes ^{b,*}, Luca Arista ^c, Giorgio Bonanomi ^a, Simone Braggio ^a, Francesca Cardullo ^a, Romano Di Fabio ^a, Daniele Donati ^d, Gabriella Gentile ^a, Dieter Humprecht ^e, Silvia Terreni ^a, Christian Heidbreder ^f, Chiara Savoia ^a, Cristiana Griffante ^a, Angela Worby ^g

^a GlaxoSmithKline, Neurosciences Centre of Excellence for Drug Discovery, Medicine Research Centre, Verona, Italy

^b Cancer Therapeutics, Melbourne, Australia

^c Novartis Institute Research, Basel, CH, Switzerland

^d Nerviano Medical Science, Nerviano, MI, Italy

^e Boehringer Ingelheim, MI, Italy

^f Altria Client Services, Richmond, VA, USA

^g GlaxoSmithKline, Molecular Discovery Research, New Frontiers Science Park, Harlow, UK

ARTICLE INFO

Article history:

Received 19 May 2009

Revised 5 June 2009

Accepted 8 June 2009

Available online 13 June 2009

Keywords:

Dopamine D₃

Antagonist

PET

Ligand

ABSTRACT

The lead optimization process to identify new selective dopamine D₃ receptor antagonists is reported. DMPK parameters and binding data suggest that selective D₃ receptor antagonists as potential PET ligands might have been identified.

© 2009 Elsevier Ltd. All rights reserved.

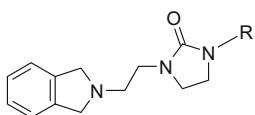
Dopamine receptors are key elements in neuronal functions. They are subdivided into two classes, the first one containing D₁ and D₅ receptors, and the second one consisting of the D₂, D₃ and D₄ receptors.¹

Following the isolation and characterization of the cDNA for the dopamine DA D₃ receptor,² a number of DA D₃ receptor antagonists both selective and non selective have been recently reported.³ Growing evidence suggests that selective antagonists at the DA D₃ receptor can reduce the reinforcing efficacy of drugs of abuse, significantly improve drug-induced learning deficits without altering the normal learning process in non-impaired rats, and show efficacy in animal models of schizophrenia.⁴

Following the identification of a class of low molecular weight selective dopamine DA D₃ receptor antagonists with potential as PET ligands,⁵ a lead optimization program was initiated to identify the ideal PET candidate molecule.

The screening cascade of the lead identification phase was revised accordingly. Each new chemical entity (NCE) was assessed for its agonistic versus antagonistic properties using a functional GTP γ S assay expressing the human DA D₃ receptor:⁶ all the com-

pounds reported in this manuscript proved to be antagonists at the D₃ receptor.

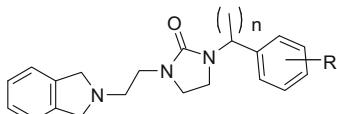

As for some previously reported lead optimization programmes for DA D₃ selective antagonists,^{6–8} it was considered important to obtain 100-fold selectivity versus DA D₂ (functional assays) and a 100-fold selectivity versus the hERG ion channel (Dofetilide binding assay).⁶

In addition, brain penetration, free fraction in tissue, and plasma protein binding were measured for selected derivatives.

Starting from the previously identified iso-indoline (**1**, Table 1),⁵ which had a 40-fold selectivity over the DA D₂ receptor, it was decided to keep the iso-indoline fixed and to explore the SAR of the aromatic ring. The replacement of the Chlorine with a trifluoromethyl group (**2**) led to similar potency at the D₃ receptor, but to a slight decrease in selectivity. The introduction of a bulky iso-propyl substituent (**3**) produced a detrimental effect on both potency and selectivity. The bis-dichloro derivative (**4**), increased potency, but had almost no selectivity, whereas the introduction of a different 3,4 pattern of substitution (**5**) led to a decrease in desired activity, but produced a 50-fold increase in selectivity versus the DA D₂ receptor. The completion of the exploration (**6–13**) of simple substituents on the phenyl ring showed that, in this series, only the 3-CN group (**10**) provided results comparable to the original starting

* Corresponding authors. Tel.: +39 045 8218515; fax: +39 045 8218196 (F.M.).
E-mail address: fm20244@gsk.com (F. Micheli).

Table 1
hERG and affinity results


Entry	R	D ₃ fpKi	D ₂ fpKi	hERG pIC ₅₀
1	3-Cl phenyl	8.6	7.0	5.5
2	3-CF ₃ phenyl	8.6	7.3	6.1
3	3-i-Pr phenyl	8.2	7.1	5.3
4	3,5-diCl phenyl	8.9	8.2	5.8
5	3-CN, 4-F phenyl	7.8	6.1	5.0
6	3,4-diCl phenyl	7.9	6.6	6.0
7	3-OCF ₃ phenyl	8.8	7.4	6.2
8	3-Cl, 4-F phenyl	7.7	6.8	5.3
9	3-O-i-Pr phenyl	7.4	6.5	5.4
10	3-CN phenyl	8.6	7.0	5.5
11	3-Cl, 5-F phenyl	8.8	7.5	5.5
12	3-Cl, 6-F phenyl	8.2	6.8	4.7
13	4-t-Bu phenyl	7.0	6.2	6.0
14	1-Benzothien-5-yl	7.2	6.6	5.7
15	2-Methyl-1,3-benzothiazol-5-yl	6.6	<5.0	5.4
16	5-Methyl-2-thienyl	6.7	6.3	4.5
17	1-Benzothien-3-yl	6.9	5.9	5.1
18	1-Benzofuran-5-yl	6.9	6.0	5.1
19	1-Acetyl-1H-indol-5-yl	6.3	<5.0	5.0
20	6-Methyl-3-pyridinyl	7.2	<5.0	4.5
21	4-(2-Pyridinyl)-3-thienyl	6.7	<5.0	nt

SEM for D₃ GTP γ S, and HERG data sets is ± 0.1 . SEM for the D₂ GTP γ S data is ± 0.2 .
nt = Not tested.

point (**1**), with no improvement in affinity at the DA D₃ receptor. Derivative **10** showed a slightly reduced Cli both in human and rat (1.6 and 23.5 ml/min/g, respectively) compared to derivative **1** (8.9 and 36.9 ml/min/g, respectively) and also had a P450 profile with IC₅₀ potencies greater than 5 μ M on all tested isoforms. Accordingly, it could have offered a suitable pharmacokinetic (PK) profile for further testing. However, it failed to satisfy all the requirements of the initial screening cascade and was therefore not progressed further. A strategy to replace the substituted phenyl ring with different heterocycles was, therefore, implemented (**14–21**, Table 1). No major improvement of selectivity was observed for this sub-series, apart from derivative **20** which proved to be active at the D₃ receptor only. However, its low affinity at the D₃ receptor did not permit further progression.

A second strategy, still keeping the unsubstituted iso-indoline fixed, moved the aromatic ring one atom away from the imidazolone ring (**22–29**, Table 2).

Table 2
hERG and affinity results

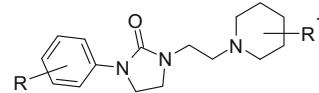
Entry	R	n	D ₃ fpKi	D ₂ fpKi	hERG pIC ₅₀
22	H	0	6.2	<5.0	4.6
23	3-Cl	0	6.9	6.3	5.6
24	3-CF ₃	0	7.9	6.6	5.2
25	3,4-diCl	0	7.1	<5.0	6.1
26	2,5-diCl	0	6.8	6.1	6.4
27	4-Cl	0	6.8	<5.0	5.7
28	2-Cl	0	6.3	6.4	5.7
29	3-CF ₃	1	6.3	<5.0	5.9

SEM for D₃ GTP γ S, and HERG data sets is ± 0.1 . SEM for the D₂ GTP γ S data is ± 0.2 .

Unfortunately, none of the prepared derivatives fulfilled the criteria of the screening cascade and the series was abandoned.

At this point of the exploration, the decision to abandon the iso-indoline scaffold was taken and two different templates were chosen as potential alternatives: substituted piperidine (Table 3) and substituted piperazines (Table 4).

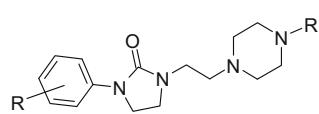
Interestingly, while alkyl substituted piperidines (**30–32**) had no major impact on selectivity, the 4-trifluoromethyl derivative **33** showed promising properties in this series (e.g., 30-fold selectivity over the DA D₂ receptor).


The corresponding 3-Cl derivative (**35**) was then prepared. This compound showed a 60-fold selectivity over the DA D₂ receptor. This derivative also showed very high Cli both on human and rat liver microsomes (17.6 and 25.8 ml/min/g, respectively) and also had a P450 profile with IC₅₀ potencies greater than 2 μ M on all tested isoforms.

Accordingly, the 3-CN derivative (**36**) was prepared, showing for the first time a 100-fold selectivity over the DA D₂ receptor and a more than 1000-fold selectivity over the hERG channel.

The more hydrophilic cyano derivative had a better Cli profile (4.9 and 11.5 ml/min/g with human and rat microsomes, respectively) and a comparable P450 profile. Further exploration within this class (**37–40**) also led to the identification of a compound (**38**) endowed with a better selectivity (126-fold), similar DMPK properties (Cli = 9.1 and 10.4 ml/min/g on h- and r-microsomes, respectively), but with a lower affinity at the DA D₃ receptor.

Promising results were also obtained with the piperazine scaffold, where both the 3-CN (**41**, Table 4) and 3-trifluoro methoxy


Table 3
hERG and affinity results

Entry	R	R ¹	D ₃ fpKi	D ₂ fpKi	hERG pIC ₅₀
30	3-Cl	3-Me	8.2	7.7	5.5
31	3-Cl	2-Me	8.1	7.6	5.7
32	3-Cl	4-Me	8.6	7.8	5.8
33	3-OH	4-CF ₃	8.9	7.4	4.8
34	3-I	4-CF ₃	9.0	7.9	6.7
35	3-Cl	4-CF ₃	8.8	7.0	5.9
36	3-CN	4-CF ₃	9.0	7.0	5.1
37	3-OCF ₃	4-CF ₃	8.3	6.8	5.4
38	3-CN, 4-F	4-CF ₃	8.1	6.0	5.2
39	3-OMe	4-CF ₃	8.0	6.8	4.6
40	3-Cl, 2-F	4-CF ₃	7.4	<5.0	4.9

SEM for D₃ GTP γ S, and HERG data sets is ± 0.1 . SEM for the D₂ GTP γ S data is ± 0.2 .

Table 4
hERG and affinity results

Entry	R	R ¹	D ₃ fpKi	D ₂ fpKi	hERG pIC ₅₀
41	3-CN	i-Pr	8.4	6.5	4.9
42	3-OCF ₃	i-Pr	8.5	6.6	5.8
43	3-CN, 4-F	i-Pr	6.9	<5.0	4.8
44	3-Cl, 2-F	i-Pr	6.8	<5.0	4.7
45	3-OMe	i-Pr	6.8	5.6	4.2
46	3-Cl	i-Pr	8.1	6.7	5.2
47	3-Cl	Me	6.8	6.3	5.4

SEM for D₃ GTP γ S, and HERG data sets is ± 0.1 . SEM for the D₂ GTP γ S data is ± 0.2 .

(42) derivatives showed good affinity at the DA D₃ receptor and good (80-fold) selectivity over the DA D₂ receptor. These piperazine derivatives also showed very promising DMPK profiles as reported below.

Derivative **41** showed the lowest Cli values ever observed in the imidazolinone scaffold (<0.5 and 0.9 ml/min/kg on h-and r-microsomes, respectively) and similar results were achieved by derivative **42** (<0.5 and 3.7 ml/min/kg on h-and r-microsomes, respectively). Both derivatives showed P450 values with IC₅₀s greater than 7 μM on all tested isoforms.

In the light of these results, the piperazine class was selected for further optimization as a potential PET ligand. Derivative **36** was selected for in vivo testing⁹ in the rat. Its DMPK profile was in agreement with the desired intravenous (i.v.) profile, showing a high brain penetration (brain to blood ratio = 6.4) with high levels in the brain (258 ng/g) after a single administration at 1 mg/kg, despite a very high blood clearance (78 mL/min/kg equivalent to 92% of the liver blood flow). The distribution volume was moderate (Vd = 5.4 l/kg) with an acceptable half-life (*T*_{1/2} = 1.7 h).

Moreover, the brain tissue binding of **36** was rather low, leading to a brain fraction unbound = 15.1%. The levels of protein binding were low in rat and pig plasma too (72% and 61%, respectively).

To fully complete the characterization of this derivative, filtration binding affinities at the human DA D₃ and D₂ receptors were performed. Filtration binding assay were also used to determine the affinity of the compound in rat and pig native tissues; the results are reported in Table 5.

These data further highlighted the potentiality of derivative **36** in terms of affinity as a potential PET ligand both in human and in preclinical species.

Data in Table 6 further strengthen its value.

Accordingly, this compound was further characterized as a potential PET ligand and this will be reported in future communications.

Acknowledgments

We would like to thank Adolfo Prandi for the preparation of some products and intermediates. We would like to acknowledge Dr. Giovanna Tedesco and Dr. Anna Maria Capelli (GSK MDR, Vero-

Table 5

Affinity results and SEM for D₃ and D₂ filtration binding

	h DA D ₃	h DA D ₂	Rat D ₃ native tissue	Pig D ₃ native tissue
pK _i	9.1 ± 0.2	6.8 ± 0.2	9.1 ± 0.1	9.1 ± 0.01

Table 6

Summary of DMPKdata for compound **36**

Entry	Brain/blood ratio	Vd (l/kg)	Clb (ml/min/kg)	T _{1/2} (h)
36	6.4	5.4	78	1.7

na) for their computational support. We would also like to thank Dr. Carla Marchioro's group for the structural and analytical support received.

References and notes

1. Schultz, W. *Ann. Rev. Neurosci.* **2007**, 30, 259.
2. Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. *Nature* **1990**, 347, 146.
3. (a) Micheli, F.; Heidbreder, C. A. *Exp. Opin. Ther. Patent* **2008**, 18, 821; (b) Micheli, F.; Heidbreder, C. *Recent Patents CNS Drug Disc.* **2006**, 1, 271; (c) Zhang, A.; Kan, Y.; Li, F. *Exp. Opin. Ther. Patent* **2006**, 16, 587.
4. Heidbreder, C. A.; Gardner, E. L.; Xi, Z.-X.; Thanos, P. K.; Mugnaini, M.; Hagan, J. J.; Ashby, C. R., Jr. *Brain Res. Rev.* **2005**, 49, 77.
5. Holmes, I.P.; Micheli, F.; Gaines, S.; Lorthioir, O.; Watson, S. P.; Di Fabio, R.; Gentile, G.; Heidbreder, C.; Savoia, C.; Worby, A. *Bioorg. Med. Chem. Lett.* **2009**, doi:10.1016/j.bmcl.2009.06.043.
6. Micheli, F.; Bonanomi, G.; Blaney, F. E.; Braggio, S.; Capelli, A. M.; Checchia, A.; Curcuruto, O.; Damiani, F.; Di-Fabio, R.; Donati, D.; Gentile, G.; Gribble, A.; Hamprecht, D.; Tedesco, G.; Terreni, S.; Tarsi, L.; Lightfoot, A.; Pecoraro, M.; Petrone, M.; Perini, O.; Pineri, J.; Rossi, T.; Worby, A.; Pilla, M.; Valerio, E.; Griffante, C.; Mugnaini, M.; Wood, M.; Scott, C.; Andreoli, M.; Lacroix, L.; Schwarz, A.; Gozzi, A.; Bifone, A.; Ashby, C. R., Jr.; Hagan, J. J.; Heidbreder, C. *J. Med. Chem.* **2007**, 50, 5076.
7. Micheli, F.; Bonanomi, G.; Braggio, S.; Capelli, A. M.; Celestini, P.; Damiani, F.; Di Fabio, R.; Donati, D.; Gagliardi, S.; Gentile, G.; Hamprecht, D.; Petrone, M.; Tedesco, G.; Terreni, S.; Worby, A.; Heidbreder, C. *Bioorg. Med. Chem. Lett.* **2008**, 18, 901.
8. Micheli, F.; Bonanomi, G.; Braggio, S.; Capelli, A. M.; Damiani, F.; Di Fabio, R.; Donati, D.; Gentile, G.; Hamprecht, D.; Perini, O.; Petrone, M.; Tedesco, G.; Terreni, S.; Worby, A.; Heidbreder, C. *Bioorg. Med. Chem. Lett.* **2008**, 18, 907.
9. The research complied with national legislation and with company policy on the Care and Use of Animals and with related codes of practice.